SI UNITS
 (Le System International d'unites)

- Standard System of measurement used by scientific community.
- Based on universal values
- Not really the metric system but close.

There are two types of nations in this world; those that use the metric system, and those who have walked on the moon.

SI Units LENGTH

METER

- 1 meter $=1 / 10,000,000$ the distance from North Pole to equator
- Distance Light Travels in 1/299,792,458 of a second
- $1 \mathrm{~m}=100$ centimeter
- 1 kilometer $=1000 \mathrm{~m}=10^{3} \mathrm{~m}$
- 1 mile $=1612 \mathrm{~m}=1.612 \mathrm{~km}$
- 1 inch $=0.0254 \mathrm{~m}=2.54 \mathrm{~cm}$

SI Units Mass

- KILOGRAM
- $1 \mathrm{~kg}=1000 \mathrm{~g}$
- $1 \mathrm{~g}=1 \mathrm{~cm}^{3}$ of water
- $1000 \mathrm{~cm}^{3}=1$ liter
- 1 liter of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~kg}$
- $1 \mathrm{~kg}=2.2 \mathrm{lbs}$
- $1 \mathrm{lb}=0.45 \mathrm{~kg}$
- $\mathrm{Kg}=$ mass, lb = Force
- Slug = mass, 1 slug = 32 lbs

SI Units TIME

- SECOND

- 1 second $=1 / 86,400$ of a mean solar day
- 1 second $=0.0000157$ days $=1.57^{*} 10^{-5}$ days
- Time it takes:
- To say: 1 chimpanzee

- A snail to travel 1 cm
- The international space station travels 7700 m
- The time a Cesium atom vibrates 9,192,631,770 times (1967, General Conference of Weights and Measures)

SI UNITS Temperature

- Kelvin (assigned in 1954)
- Based on Celsius
- $0 \mathrm{~K}=$ absolute zero $=-273.15^{\circ} \mathrm{C}=-459.67{ }^{\circ} \mathrm{F}$
- 273.15 K = Freezing Point of Water $=0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$
- $373.15 \mathrm{~K}=$ Boiling Point of Water $=100^{\circ} \mathrm{C}=212^{\circ} \mathrm{F}$
- Other Important Temps:

Measurements \& Significant Digits

- Significant Digits are determined by the final digit of a measurement
- Final digit of a measurement is estimated
- Measure to the smallest unit on the scale, then estimate the final digit

Significant Digits RULES FOR ZEROS

- All non-zero numbers are significant
- All Final Zeros after a decimal are significant (ex. 3.0 cm)
- Zeros between of Sig. Digits are significant (ex. 20.05 mm)
- Zeros use only as as place holders are NOT significant (ex. 0.030 m , or 0.0205 m)

Using Significant Digits Addition and Subtraction

- Round final calculation to the least accurate measurement.

$$
\text { Ex.: } \quad 12.26 m+3.5 m=15.76 m=
$$

\qquad

- Measurements must be in the same units:

Ex.: $\quad 12.2 \mathrm{~m}+3.21 \mathrm{~cm}=$ \qquad

Ex.: $\quad 5.21 \times 10^{5}+8.62 \times 10^{3} \mathrm{~cm}=$ \qquad

Using Significant Digits Multiplication \& Division

Round to the fewest significant digits

- Ex. $\quad(12.0 \mathrm{~kg} * 0.050 \mathrm{~m} / \mathrm{s})=$
- Ex. (15.21m / 2.1 s) =
- Ex: $\quad 5.21 \times 10^{5} \mathrm{~m} * 8 \times 10^{3} \mathrm{~m}=$ \qquad

Calculate perimeter and area of the object

 below with the appropriate significant figures

HW: Worksheet

GRAPHING RELATIONSHIPS

The temperature of a balloon is increased from $20^{\circ} \mathrm{C}$ in 10 degree increments.

The diameter of the balloon is measured and recorded as the temperature increases.

Independent Variable:
Temperature

Dependent Variable:
Diameter

20.0 cm
11.0 cm

Types of Relationships: Direct Relationship

- Straight Line
- Δy constant as x changes
- EASY TO MAKE PREDICTIONS
- $y=m x+b$
- $m=$ slope $=\frac{\Delta y}{\Delta x}$
- $b=y$-intercept $=$ starting point

Describing Relationship

- Y is DIRECTLY related to X

Types of Relationships: Exponential Relationship

- Parabola
- Δy will increase and decrease as x changes.

- $y=A x^{2}+B x+C$

How to describe relationship:

- y exponentially related to x
- y directly related to x^{2}

Types of Relationships: Inverse Relationship

Light vs Distance

- Hyperbola
- Δy will decrease as x changes.
- Never reaches zero (asymptote)
- $y=\frac{n}{x}=n \frac{1}{x}=n x^{-k}$
- y inversely related to x
- y directly related to the inverse of x

Graphing Software

- TI N-spire (Hopefully you remember from last year)
- Vernier Graphical Analysis -4 (See Link on Notes page)

Graphing Software

- TI N-spire (Hopefully you remember from last year)
- Vernier Graphical Analysis -4 (See Link on Notes page)

Sample 1: Balloon Lab:

Lab Example:

The temperature of a balloon is increased from $20^{\circ} \mathrm{C}$ in 10 degree increments.

The diameter of the balloon is measured and recorded as the temperature increases.

```
X-Axis
Independent Variable:
        Temperature
Y-axis
Dependent Variable:
    Diameter
```

Graph the data and describe the relationship

Sample 2:

The acceleration of a cart is measured when the mass is added to a cart pulled along a frictionless track.

Use the data below to determine the Force on the cart.

mass (kg):	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
5	3.9
8	2.6
15	1.3
18	1.1
22	0.91

Vernier Software
Graph the data and describe the relationship

Sample 3:

The current (I) in a simple circuits is increased in 2 Amp increments.
The potential difference (V) across a resistor measured (Volts)
This Data is used to determine the Resistance.

CURRENT (amps):	POTENTIAL DIFFERENCE (volts)
2	3.1
4	5.9
6	9.1
8	11.9
10	15.1

Graph the data and describe the relationship

The slope of the line represents the Resistance of the Circuit.

Determine the Resistance

Determining Absolute Zero
 (HOMEWORK)

