CIRCUITS

Current
Resistance
Ohms Law
Power
Series Circuits
Parallel Circuits
Combination Circuits

CIRCUITS

Circuit Diagram

Basic Circuit

Electric Current

- Rate of Flow of Electric Charge through a conductor.

Time: 2 seconds

$$
I=\frac{\Delta Q}{\Delta t}
$$

- Unit of electric current: the ampere, A.

$$
1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s} .
$$

The direction of current in a circuit is described as the direction positive charge move. $(+\rightarrow-)$

But, actually it's the electrons that move through a circuit in the opposite direction of conventional current.

Drift Velocity

When Electrons move through a wire, they do not move very fast or very straight.

The bounce off and move around each other.

The average speed of the charges is very slow (measured in centimeters per second)

The average speed of the electron is called drift velocity

Copyright © 2005 Pearson Prentice Hall, Inc.

Resistance

- Slows the flow of electric charge
- Uses energy in a circiut
- The ratio of voltage to current is called the resistance: $R=\frac{V}{I}$
- Measure in Ohms. (rhymes with "owns")
- $1 \frac{\text { Volt }}{\text { Amp }}=1 \Omega$ (Ohms)

Resistance

The Resistance of a wire:

- Is Characteristic of the material
- (Resistivity)
- Is Directly proportional to Length
- L个, $\Omega \uparrow$
- Is Inversely proportional to Area.
- $\mathrm{A} \uparrow, \Omega \downarrow$
- Increases with temperature
- T个, $\Omega \uparrow$

Ohm's Law $V=I R$

Potential	Current	Resistance
$?$	0.5 A	12Ω
12 V	$?$	4Ω
6 V	1.5 A	$?$

Solution

$$
\begin{aligned}
& V=I R=.5 * 12 \\
& =6 V \\
I & =\frac{V}{R}=\frac{12}{4}=3 A \\
R & =\frac{V}{I}=\frac{6}{1.5}=4 \Omega
\end{aligned}
$$

Power

- Rate at which work is done

- $P=\frac{\text { Work }}{\text { time }} \rightarrow V=\frac{\text { Work }}{Q} \rightarrow$ Work $=Q V \rightarrow$ (see electric potential $)$
- $P=\frac{\text { Work }}{t}=\frac{Q V}{t}=\frac{Q}{t} V \rightarrow\left[\frac{Q}{t}=I\right] \rightarrow P=I V$

- $P=I V \rightarrow(V=I R) \rightarrow I(I R)=P=I^{2} R$
- $P=I V \rightarrow I=\frac{V}{R} \rightarrow P=\frac{V}{R} V=P=\frac{V^{2}}{R}$

3 ways to calculate power.
$P=I V=I^{2} R=\frac{V^{2}}{R}$

Magic Circle

Power: Examples

Use Ohms law, and the Power Equations to Complete the following Table.

Potential	Resitance	Current	Power
12 V	$?$	0.5 A	$?$
$?$	4Ω	0.75 A	$?$
4 V	2Ω	$?$	$?$

$$
P=I V=I^{2} R=\frac{V^{2}}{R}
$$

Solutions

Potential	Resistance	Current	Power
	$R=\frac{V}{I}=24 \Omega$		$P=I V=6 \mathrm{~W}$

$$
V=I R
$$

$$
\begin{array}{l|l|l}
& P=I R=3 A & \\
& & \\
& = & I^{2} R \\
& & \\
\hline & I=\frac{V}{R}=2 A & P=\frac{V^{2}}{R}=8 W
\end{array}
$$

Power

- The electric company measures kilowatt hours $\rightarrow \mathrm{kWh}$
- kWh = power * time = Work
- Work required to keep your household running.
- $1 \mathrm{kWh}=1000 \mathrm{~W} * 3600 \mathrm{~s}=3.6^{*} 10^{6} \mathrm{~J}$

Residential - Schedule R
Billing Period: May 1, 2014 - Jun 3, 2014
Days Billed: 33
Meter Read on June $3 \quad$ Meter \# 000012345

Current Reading	Previous Reading		kWh Used	
13951	-	13386	$=$	565

$513.64 \mathrm{kWh} \times .0966200 \quad 49.63$
$51.36 \mathrm{kWh} \times .0885700 \quad 4.55$BGE Electric Delivery Service
Customer Charge 7.50

EmPower MD Chg $\quad 565 \mathrm{kWh} \times .0041100 \quad 2.32$ Distribution Chg RSP Chg/Misc Cr Dmd Res Chg/Cr $565 \mathrm{kWh} \times .0280100$15.83

ERI Initiative Chg 16
$565 \mathrm{kWh} \times .0002900$
$565 \mathrm{kWh} \times .0002900$ $565 \mathrm{kWh} \times .0033300$1.88
(10) State / Local Taxes \& Surcharges

MD Universal Svc Prog
Envir Srchg $565 \mathrm{kWh} \times .0001500$. 08

Franchise Tax $565 \mathrm{kWh} \times 0006200$.35
Total BGE Electric Amount \$82.71

The RSP Charge on this bill includes a qualified rate stabilization charge of $\$ 0.00611$ per kWh approved by the Maryland PSC that BGE is collecting as servicer on behalf of RSB BondCo LLC, which owns the qualified rate stabilization charge.

Resistors in Series

A series connection has a single path from the battery, through each circuit element in turn, then back to the battery.

- The sum of the voltage drops across the resistors equals the battery voltage.
- The current through each resistor is the same.
- Voltage across each resistor is different

$$
V=V_{1}+V_{2}+V_{3}
$$

$$
\begin{aligned}
& V=I R_{1}+I R_{2}+I R_{3} \\
& V=I\left(R_{1}+R_{2}+R_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
V=I R_{e q} \\
\boldsymbol{R}_{e \boldsymbol{q}}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\boldsymbol{R}_{\mathbf{3}}
\end{gathered}
$$

Resistors in Series

Determine the following:

- Equivalent Resistance of the circuit
- Current through the resistors
- Voltage Drop across each resistor
- Power dissipated by each resistor
- Power dissipated by the entire circuit

Resistors in Series

Determine the following:

- Equivalent Resistance of the circuit
- Current through the resistors
- Voltage Drop across each resistor
- Power dissipate by each resistor
- Power dissipate by the entire circuit

Resistors in Parallel

- A parallel connection splits the current
- The voltage across each resistor is the same
- Current across each resistor is different.

(a)
- $I=I_{1}+I_{2}+I_{3}$
- $\frac{V}{R_{e q}}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}$
- $\frac{V}{R_{e q}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)$

$$
\text { - } \frac{1}{R_{e q}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

Resistors in Parallel

Determine the following:

- Equivalent Resistance of the circuit
- Current through the circuit
- Current across each resistor

- Power dissipated by each resistor
- Power dissipated by the entire circuit

Resistors in Parallel

Determine the following:

- Equivalent Resistance of the circuit
- Current through the circuit
- Current across each resistor
- Power dissipated by each resistor

- Power dissipated by the entire circuit

Complex Circuits

Determine the following:

- Equivalent Resistance of the circuit
- Total Current through the circuit
- Current through each resistors
- Voltage Drop across each resistor
- Power dissipate by the entire circuit

Complex Circuits

Determine the following:

- Equivalent Resistance of the circuit
- Total Current through the circuit
- Current through each resistors
- Voltage Drop across each resistor
- Power dissipate by the entire circuit

Complex Circuits

Determine the following:

- Equivalent Resistance of the circuit
- Total Current through the circuit
- Voltage Drop across each resistor
- Power dissipate by the entire circuit

