Rotational Motion

Angular Displacement, Velocity, Acceleration
Rotation w/constant angular acceleration
Linear vs. Angular Kinematics
Rotational Energy
Parallel Axis Thm.

Angular Displacement (θ)

- Angular = Rotational
- Measured in Radians
- 1 complete rotation $=2 \pi$ radians

- Easy to convert from angular to translational
- $d=\theta r$

Examples

A dog $(r=0.12 m)$ make 3 complete rotations as it rolls own a hill.

- What is the angular displacement of the dog?
- What is the linear displacement dog?

- A cat runs 7 m on wheel with a radius of 0.75 m . How many rotations does the wheel make?

Angular Velocity $=(\omega)$

- $v=\frac{d}{t}=\frac{\theta}{t}=\mathrm{rad} / \mathrm{sec}$
- rpm = rotations per minute
- $r p m * \frac{2 \pi}{60}=\omega$
- $v=\omega r$

EXAMPLE

- Convert 45rpm to rad/s
- What is the translation Velocity on the outer edge of the record? (diameter $=30 \mathrm{~cm}$)

Angular Acceleration $=(\alpha)$

- $\alpha=\frac{\Delta \omega}{t}$

Translational Acceleration

- $a_{t}=\alpha r$

Centripetal Acceleration

- $a_{c}=\frac{v^{2}}{r}=\omega^{2} r$

Example:

A Washing machine motor accelerates from $0-200 \mathrm{rpm}$ in 5 seconds.

- What is the angular acceleration of the motor in rad $/ \mathrm{s}^{2}$?
- A small pony is in the machine ($r=0.30 \mathrm{~m}$), what is the translational acceleration of the pony as the motor accelerates?
-What is the centripetal acceleration of the pony?

Example:

Motion with Constant Acceleration

$$
\begin{array}{c|c|c|c|}
\hline v=\frac{d}{t} & \mathrm{~d}=\mathrm{vt}+\mathrm{d}_{\mathrm{i}} & a=\frac{\Delta v}{t} & \mathrm{v}_{\mathrm{f}}=\mathrm{at}+\mathrm{v}_{\mathrm{i}} \\
\omega=\frac{\theta}{t} & \theta=\omega t+\theta_{i} & \alpha=\frac{\Delta \omega}{t} & \omega=\alpha t+\omega_{i} \\
\hline d=\frac{1}{2} a t^{2}+v i t+d i & d=\frac{1}{2}\left(v_{1}+v_{2}\right) t & v_{f}^{2}=2 a d+v i^{2} \\
\theta=\frac{1}{2} \alpha t^{2}+\omega_{i} t+\theta_{i} & \theta=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t & \omega_{f}^{2}=2 \alpha \theta+\omega_{i}^{2}
\end{array}
$$

Example:

A biker accelerates from rest to $8 \mathrm{~m} / \mathrm{s}$ in 5 seconds.

The radius of the bicycle wheels is 0.25 m .

- What is the angular acceleration of the wheels?
- How far does the biker travel?
- How many rotations does the wheel make?

- If he gets tired and comes to rest in 10 m , what is the angular acceleration of the wheels?

Energy in Rotational Motion

Objects in motion have Kinetic Energy
Rotating Objects have Kinetic Energy

Energy of single particle:

$$
\begin{gathered}
K E=\frac{1}{2} m v^{2} \rightarrow v=\omega r \rightarrow \frac{1}{2} m(\omega r)^{2} \\
K E=\frac{1}{2}\left(m r^{2}\right) \omega^{2} \rightarrow m r^{2}=I=m o m e n t \text { of Inertia }=\sum_{i} m_{i} r_{i}^{2} \\
K E=\frac{1}{2} I \omega^{2}
\end{gathered}
$$

Moment of Inertia (rotational mass)

- Resistance to changes in Rotational Motion
- Depends in distribution of mass.
pg. 342:
(a) Slender rod, axis through center $I=\frac{1}{2} M\left(R_{1}{ }^{2}+R_{2}{ }^{2}\right)$
(e) Hollow cylinder

axis through one end
$I=\frac{1}{2} M R^{2}$

(f) Solid cylinder
$I=\frac{1}{3} M L^{2}$

(g) Thin-walled hollow

(h) Solid sphere

(i) Thin-walled hollow sphere

Moment of Inertia

determine the moment of Inertia around the center of the object below

Energy in Rotational Motion (work energy thm.)

A force of 10 N acts for 2.0 m on 40 kg Solid Disc with a radius of 0.15 m . What is the final angular speed of the wheel as it spins on its axis?

Energy in Rotational Motion

A 2 kg block is tied to the outer edge of a 1.5 kg sphere with a
 diameter of 0.80 m . The block is allowed to fall 1.5 m , causing the sphere to rotate.
What is the final speed of the wheel and the block?

$$
\Delta G P E=K E_{1}+K E_{2}
$$

Energy in Rotational Motion

A meter stick standing on one end is allowed to fall, What is the speed of the end of the meter stick?

Parallel Axis Thm.

- Determine the moment of Inertia for alternative axis of rotation.

$$
I_{p}=I c m+M d^{2}
$$

$I_{c m}=$ Moment of Inertia around Center of mass
$d=$ distance from axis to center of mass

L
Using the Parallel Axis Thm., determine the moment of Inertia around the two positions shown.

Parallel Axis Thm.

Using the Parallel Axis Thm, determine the moment of Inertia around the axis shown through the Hollow sphere.

Determine Moment of Inertia

Evaluate the moment of Inertia by modeling the object divideded into many small "volume elements" of mass $\boldsymbol{\Delta m}$
$I=\Sigma\left(m r^{2}\right) \rightrightarrows I=\int r^{2} d m$

For 3D objects:

$d m$ expressed in Volume Density

$$
\begin{gathered}
\rho=\frac{d m}{d V} \rightarrow d m=\rho * d V \\
I=\int \rho r^{2} * d V
\end{gathered}
$$

Challenge: What is $d m$?

For 2D objects:

$d m$ expressed in Linear Density

$$
d m=\frac{M}{L}
$$

$$
I=\int r^{2} * d m=\int r^{2} * \frac{M}{L}
$$

Determine Moment of Inertia

Calculation:

Uniform (solid) Cylinder

$$
\begin{gathered}
I=\int r^{2} * d m \int \rho r^{2} * d V \\
d m=\rho * d V \\
d V=A r e a * L d r=(2 \pi r) d r * L \\
d m=\rho(2 \pi r) L \\
\rho=\frac{M}{V}=\frac{M}{L * \pi r^{2}}
\end{gathered}
$$

$$
\begin{gathered}
I=\int r^{2} * d m \int r^{2} * \rho d V \\
I=\int r^{2} * \rho(2 \pi r) L \\
I=\rho 2 \pi L \int r^{3} \\
I=\rho 2 \pi L * \frac{r^{4}}{4} \\
I=\frac{M}{L * \pi r^{2}} * 2 \pi L * \frac{r^{4}}{4}
\end{gathered}
$$

Simplify

$$
I=\frac{1}{2} m r^{2}
$$

Determine Moment of Inertia

Uniform Rod through the center (2D object)

$$
\begin{gathered}
-\frac{L}{2} \\
I=\int r^{2} * d m \\
d m=\frac{M}{L}
\end{gathered}
$$

Calculation:

$$
\begin{gathered}
I=\int_{-L / 2}^{L / 2} r^{2} * d m \\
I=\int_{-L / 2}^{L / 2} r^{2} * \frac{M}{L}=\frac{M}{L} \int r^{2} \\
I=\frac{M}{L}\left[\frac{r^{3}}{3}\right]_{-L / 2}^{L / 2} \\
I=\frac{M}{3 L}\left\lceil r^{3}-r^{3}\right\rceil
\end{gathered}
$$

Simplify:

$$
I=\frac{1}{12} M L^{2}
$$

Determine Moment of Inertia

Uniform Rod through one end (2D object)

$I=\int r^{2} * d m$
$d m=\frac{M}{L}$

Calculation: (you do it)

$$
I=\int_{0}^{L} r^{2} * d m
$$

