Graphing Straight Lines

AP Physics

Graphing Software

- TI N-spire (Hopefully you remember from last year)
- Vernier Graphical Analysis -4 (See Link on Notes page)

GRAPHING RELATIONSHIPS

Y-axis

- Dependent Variable
- What is measured y-axis

X-axis

- Independent Variable
- Predetermined

Types of Relationships: Direct Relationship

- Straight Line
- Δy constant as x changes
- EASY TO MAKE PREDICTIONS
- $y=m x+b$
- $m=$ slope $=\frac{\Delta y}{\Delta x}$
- $b=y$-intercept $=$ starting point

Describing Relationship

- Y is DIRECTLY related to X

Direct Relationship: Example

The current (I) in a simple circuits is increased in 2 Amp increments.
The potential difference (V) across a resistor measured (Volts)
This Data is used to determine the Resistance.

Independent Variable? I
Dependent Variable?

CURRENT (amps):	POTENTIAL DIFFERENCE (volts)
2	3.1
4	5.9
6	9.1
8	11.9
10	15.1

Analyze w/

Vernier Software

Types of Relationships: Exponential Relationship

- Parabola
- Δy will increase and decrease as x changes.

- $y=A x^{2}+B x+C$

How to describe relationship:

- y exponentialily related to x
- y directly related to x^{2}

GRAPHING RELATIONSHIPS

Lab Example:

The temperature of a balloon is increased from $20^{\circ} \mathrm{C}$ in 10 degree increments.

The diameter of the balloon is measured and recorded as the temperature increases.

Independent Variable:

Temperature

Dependent Variable:
Diameter

Analyze w/
Vernier Software

Types of Relationships: Inverse Relationship

Light vs Distance

- Hyperbola
- Δy will decrease as x changes.
- Never reaches zero
- $y=\frac{n}{x}=-n x^{-1}$
- y inversely related to x
- y directly related to the inverse of x

$$
y=\frac{149}{x^{2}}
$$

Inverse Relationship:

The acceleration of a cart is measured when the mass is added to a cart pulled along a frictionless track.

Use the data below to determine the Force on the cart.

mass (kg):	Acceleration (m/s ${ }^{2}$)	
5	3.9	Analyze w/ Vernier Software
8	2.6	a
15	1.3	
18	1.1	
22	0.91	=ma

The period of a pendulum is can be found with the following equation:
$T=2 \pi \sqrt{\frac{L}{g}}$
Solve equation for g :

$$
g=4 \pi^{2} \frac{L}{T^{2}}
$$

Use the data given and the equation to graph a straight line, and use the slope of the line to determine the acceleration of gravity:

Length (m)	Period (s)	τ^{2}
0.3	1.10	
.4	1.27	
.5	1.42	
.6	1.55	
.7	1.68	

L is independent variable (x-axis)

Period / Period squared id dependent variable. (Y -axis)

Slope of straight line is $\frac{T^{2}}{L}$

$$
g=4 \pi^{2} \frac{L}{T^{2}} \quad g=4 \pi^{2} \frac{1}{\text { slope }} \quad g=\frac{4 \pi^{2}}{\text { Slope }}
$$

