Graphing Straight Lines

AP Physics

Graphing Software

- TI N-spire (Hopefully you remember from last year)
- Vernier Graphical Analysis -4 (See Link on Notes page)

GRAPHING RELATIONSHIPS

Y – axis

• Dependent Variable

Types of Relationships: Direct Relationship

- Straight Line
- Δy constant as x changes
- EASY TO MAKE PREDICTIONS

•
$$y = mx + b$$

•
$$m = \text{slope} = \frac{\Delta y}{\Delta x}$$

• *b* = y-intercept = starting point

Describing Relationship

• Y is DIRECTLY related to X

Direct Relationship: Example

The current (I) in a simple circuits is increased in 2 Amp increments.

The potential difference (V) across a resistor measured (Volts)

This Data is used to determine the Resistance.

Independent Variable? T Dependent Variable? V

CURRENT (amps):	POTENTIAL DIFFERENCE (volts)
2	3.1
4	5.9
6	9.1
8	11.9
10	15.1

Analyze w/ Vernier Software

Types of Relationships: Exponential Relationship

- Parabola
- Δy will increase and decrease as x changes.
- $y = Ax^2 + Bx + C$
- How to describe relationship:
- y exponentially related to x
- *y* directly related to x^2

GRAPHING RELATIONSHIPS

Lab Example:

The temperature of a balloon is increased from 20°C in 10 degree increments.

The diameter of the balloon is measured and recorded as the temperature increases.

Independent Variable: Temperature

Dependent Variable: Diameter

temp (c)

Types of Relationships: Inverse Relationship

- Hyperbola
- Δy will decrease as x changes.
- Never reaches zero

• $y = \frac{n}{x} - h x^{-1}$

- *y* inversely related to *x*
- y directly related to the inverse of x

Inverse Relationship:

The acceleration of a cart is measured when the mass is added to a cart pulled along a frictionless track.

Use the data below to determine the Force on the cart.

mass (kg):	Acceleration (m/s ²)	Apalyzo w/
5	3.9	Vernier Software
8	2.6	α $\frac{\alpha}{m}$
15	1.3	
18	1.1	m
22	0.91	F=ma
	2	5/ope= - F= 19. G3N

The period of a pendulum is can be found with the following equation:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

Solve equation for g:

$$g = 4\pi^2 \frac{L}{T^2}$$

Use the data given and the equation to graph a straight line, and use the slope of the line to determine the acceleration of gravity:

~	-

Length (m)	Period (s)	
0.3	1.10	
.4	1.27	
.5	1.42	
.6	1.55	
.7	1.68	

L is independent variable (x-axis)

Period / Period squared id dependent variable. (Y-axis)

Slope of straight line is $\frac{T^2}{L}$

$$g = 4\pi^2 \frac{L}{T^2}$$
 $g = 4\pi^2 \frac{1}{slope}$ $g = \frac{4\pi^2}{Slope}$

