Adding Vectors

- Drawing Vectors
- Pythagorean Thm.
- Vector Components
- Law of Cosines / Law of Sines

Adding Vectors (drawing vectors)

- Draw Vectors Tip to Tail
- Where one vector ends, the other begins
- Resultant: The vector from the start of the first vector, to the end of the final vector.
- Example: A dog walks due East 20 m, then due South 15m, then due West 10m, Due North 5 m .

Adding Vectors (determining resultant)

Adding Vectors (determining resultant)

- A bird flies due east at $15 \mathrm{~m} / \mathrm{s}$, the wind blows due nort at $10 \mathrm{~m} / \mathrm{s}$. What is the resultant velocity of the bird?

MAGNITUDE:
$a^{2}+b^{2}=c^{2}$

DIRECTION

$$
\tan ^{-1}\left(\frac{y}{x}\right)
$$

Adding Vectors (determining resultant)

- A bird flies due east at $10 \mathrm{~m} / \mathrm{s}$, the wind blows 37° North of East at $15 \mathrm{~m} / \mathrm{s}$. What is the resultant velocity of the bird?

MAGNITUDE:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

DIRECTION

$$
\frac{A}{\sin A}=\frac{B}{\sin B}=\frac{C}{\sin C}
$$

Adding Vectors (components)

- Vectors at angles can be split into perpendicular components.
- perpendicular components are independent of each other
- EXAMPLE: A ship sails 500 m at 50° North of East.

$$
X=500 \cos (50) \quad Y=500 \sin (50)
$$

Adding Vectors (determining resultant w/ Components)

- A paper plane flies due East with an airspeed of $10 \mathrm{~m} / \mathrm{s}$. The wind blows at $8 \mathrm{~m} / \mathrm{s}, 60^{\circ}$ North of West. What is the resultant Velocity?

Adding Vectors

- Draw Diagram
- Make Triangle if appropriate
- Determine Strategy
- Pythagorean Thm.
- Law of Cosine / Law of Sines
- Vector Components

Horizontal Projectiles

- Perpendicular Components of Motion are independent of each other
V_{x} remains constant
V_{y} accelerates due to gravity
Bullet Dropped vs. Bullet Fired

Horizontal Projectiles

- Vertical component Determines time

$$
\longrightarrow v_{x}=250 \mathrm{~m} / \mathrm{s}
$$ in the air

- $d_{y}=1 / 2 a t^{2} \quad\left(v_{y}=0\right)$

- Time and Horizontal Component Determine Range
- $d_{x}=v_{x} t$

Projectiles at an Angle

Perpendicular Components are independent of eachother.
$v_{y}=v_{o} \sin \theta$

- Accelerates due to gravity
$v_{x}=v_{0} \cos \theta$
- Remains Constant

Projectiles at an Angle

- Vertical Component of Velocity determines:
- Max Height
- Air Time

$$
\begin{aligned}
& \left(v_{y}=v_{o} \sin \vartheta\right) \\
& \left(a=g=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { down }\right) \\
& \quad \text { • } d_{y}=1 / 2 a t^{2}+v_{y} t+d_{y i} \\
& \\
& \text { - } v_{f}^{2}=2 a d_{y}+v_{y i}{ }^{2} \\
& \\
& \\
& \text { - } v_{f}=a t+v_{i}
\end{aligned}
$$

Projectiles at an Angle

- Horizontal Component of Velocity determines Range
- $\mathrm{d}_{\mathrm{x}}=\mathrm{v}_{\mathrm{x}} \mathrm{t}$
- $\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{o}} \cos \theta$

Example

- A small bird with no wings is fired from a sling shot at an angle of 40° with a speed of $20 \mathrm{~m} / \mathrm{s}$

Example

- A small bird with no wings is fired from a sling shot at an angle of 40° with a speed of $20 \mathrm{~m} / \mathrm{s}$

Example

- A small bird with no wings is fired from a sling shot at an angle of 40° with a speed of $20 \mathrm{~m} / \mathrm{s}$

Example 2:

A dirt biker jumps off a ramp 4 meters high with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°.

How long is he in the air?

Example 2:

A dirt biker jumps off a ramp 4 meters high with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°.

How far does he go?

Example 2:

A dirt biker jumps off a ramp 4 meters high with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°.

How fast is he going when he lands?

Uniform Circular Motion motion in a circle of constant radius \& constant speed

Texas Motor Speedway

- Radius of Turns $=775 \mathrm{ft}=230 \mathrm{~m}$
- Record Qualifying Speed $=233 \mathrm{mph}$
- What is the centripetal Acceleration of the driver?

- How many g's does the driver feel?

Jet Pilots,
Astronauts,
Daredevils
$r=7.0 \mathrm{~m}$
$\mathrm{a}=6.1 \mathrm{gs}$
$V=$?

Record player (rpm)

What is the centripetal acceleration at outer edge?
$\mathrm{Rpm} \longrightarrow \mathrm{m} / \mathrm{s}$

EXAMPLE

Your inner fish has a rotational rate of 20 rpm .

- What is the period of rotation?
- Using period of rotation and a radius of 3 m , Determine the acceleration of the fish.

$$
a=\frac{v^{2}}{r} \quad v=\frac{d}{t^{\prime}} \quad d=2 \pi r
$$

$$
\begin{gathered}
v=\frac{2 \pi r}{T} \rightarrow v^{2}=\frac{4 \pi^{2} r^{2}}{T^{2}} \\
a=\frac{4 \pi^{2} r}{T^{2}}
\end{gathered}
$$

